
Token Merging with Class Importance Score
Kwang-Soo Seol

Department of Electronic Engineering
Hanyang University

Seoul, Korea
kwang4010@hanyang.ac.kr

Si-Dong Roh
Department of Electronic Engineering

Hanyang University
Seoul, Korea

sdroh1027@hanyang.ac.kr

Ki-Seok Chung*
Department of Electronic Engineering

Hanyang University
Seoul, Korea

kchung@hanyang.ac.kr

Abstract—Vision Transformers have achieved high perfor-
mance in computer vision tasks, but their high computational cost
and low throughput are weaknesses. Therefore, much research
has been done to reduce the size of Vision Transformers. Among
them, studies on pruning unnecessary tokens are being actively
conducted to reduce the number of tokens used for self-attention
computation inside the Vision Transformer. Recently, token
merging has been proposed as a new alternative approach. These
studies aim to increase throughput with a small accuracy drop
by merging similar tokens instead of pruning them. A previous
study finds similar tokens using cosine similarity and merges
them with a weighted average. However, merging a large number
of tokens at once may lead to an accuracy drop because of
the underestimating of important information. In this paper, we
propose ToMeCIS, a method that merges similar tokens through
a weighted average using the class importance score of tokens
to reduce the accuracy drop. When ToMeCIS is applied to a
pretrained DeiT-S and evaluated on the ImageNet-1k dataset,
the throughput is increased by about 50% with an accuracy
drop of less than 1% without additional training. In addition,
importance scores were evaluated with different metrics to find
the best accuracy versus throughput trade-off.

Index Terms—computer vision, deep learning, model compres-
sion

I. INTRODUCTION

The Transformer, a state-of-the-art deep learning model,
employs self-attention mechanisms to process input sequences
concurrently and capture long-range dependencies. Many
Transformers, such as BERT [1], have achieved state-of-the-
art performance in various natural language processing tasks.
However, Transformers have not been extensively utilized
in vision tasks due to the importance of local information
over global information in images. Nevertheless, the recent
emergence of Vision Transformer (ViT) [2] triggered active
research of Transformers in vision tasks. ViT divides the image
into small patches and represents each patch as a single token
vector, which enables the image to be processed using the
encoder structure of Transformers while preserving its local
information. ViT has often demonstrated higher accuracy than
traditional Convolutional Neural Networks (CNNs). However,
the self-attention operation in ViT suffers from high computa-
tional cost and low throughput due to its quadratic complexity
to the number of tokens.

Recently, there has been a surge of research on compressing
ViTs to reduce computational costs and increase throughput.
One of the key research aspects is reducing the number of

Fig. 1. Overall structure of the ToMeCIS

tokens. These approaches employ token pruning methods to
select unnecessary tokens. Primary strategies for identifying
unnecessary tokens have been twofold. The first strategy
exploits a learnable mask [3], [4], [5] to determine the tokens
that should be pruned. During the model training phase, the
mask is learned to identify tokens for pruning, which are then
selected and removed using the learned mask during inference.
The second strategy prunes tokens based on specific scores
[6], [7], [8]. Each token is assigned an importance score,
and tokens with low scores are regarded as unnecessary and
subsequently pruned.

While these studies improve throughput by pruning tokens,
they suffer the drawback of discarding meaningful information
in the removed tokens. To overcome this limitation, recent
studies explored reducing the number of tokens by merging
similar tokens [9], [10]. These studies either learn networks
to summarize token information [9] or directly calculate the
similarity between tokens [10] to identify similar tokens. In the
latter approach, the merging process involves a weighted aver-
aging of tokens, which takes the number of tokens combined
in previous layers into account. However, the study does not
factor in the importance of individual tokens. An equal mix
of important and less important tokens can incur the loss of
information contained in the important tokens.

In this paper, we propose ToMeCIS, a novel method for
merging similar tokens while considering the importance of
each token. We utilize a metric called class importance



score (CIS) to represent the importance of each token. The
CIS of each token is calculated using the value of the token and
the relationship between the class token and the correspond-
ing token. These values can be easily obtained during self-
attention of Vision Transformers. ToMeCIS identifies similar
tokens using cosine similarity between tokens and merges
them into a new token. The values of the new tokens are
obtained by computing a CIS-based weighted average of the
merged tokens. Fig. 1 shows the overall structure of ToMeCIS.
Attn and CLS refer to attention and class, respectively.
We apply ToMeCIS to DeiT and evaluate its performance
on image classification tasks with the popular ImageNet-1k
dataset [11]. Experimental results demonstrate that ToMeCIS
increases throughput by 50% with an accuracy drop of less
than 1% compared to DeiT-S without additional training.
We also compare the performance of ToMeCIS with other
ViTs with a similar number of parameters and different token
reduction methods. Furthermore, we explore various ways of
scoring token importance in ablation studies and measure their
accuracy and throughput.

II. RELATED WORKS

A. Transformer in vision tasks

The ViT [2] is a Transformer model adapted for vision tasks.
ViT converts input images into a sequence of tokens and uti-
lizes the Transformer encoder to process them. ViT classifies
the images by taking the output, which includes the class token
containing class-specific information, from multiple encoder
layers and feeding it into an MLP layer. ViT has demonstrated
superior performance to traditional Convolutional Neural Net-
works. However, it has the drawback of requiring training
on a large dataset of hundreds of millions of samples such
as JFT-300M [12] to achieve good performance. To address
this limitation, DeiT [13] leverages knowledge distillation via
distillation tokens and achieves competitive performance by
training on ImageNet-1k, a dataset of 1 million samples.

B. Token reduction

The self-attention mechanism in Transformers incurs a
quadratic increase in computational cost with respect to the
number of tokens. Consequently, a lot of studies have fo-
cused on reducing the number of tokens. DynamicViT [3]
prunes tokens by learning a binary decision mask that distin-
guishes between necessary and unnecessary tokens. EViT [6]
determines token importance by computing attention scores
based on self-attention values and prunes tokens with low
attention scores. ATS [8] assigns importance scores to tokens
by multiplying the attention score with the L2-norm of each
token’s value and selectively prunes tokens through sampling.
TokenLearner [9] reduces the number of tokens by generating
a smaller set of new tokens through a learnable linear layer
that selects information from input image pixels. ToMe [10]
calculates token similarity using cosine similarity and reduces
the number of tokens by merging similar tokens through a
weighted average using bipartite soft matching. In ToMe,
the merging weight of each token is the token size. The

proposed method of this paper is similar to ToMe, but the main
difference is that our method calculates the merging weight
based on the importance of tokens which can be obtained
during self-attention.

III. PROPOSED METHOD

In this section, we outline the ViT procedure briefly and
explain the bipartite soft matching algorithm employed in
ToMe [10]. Next, we describe our novel token merging process
based on class importance scores.

A. Vision Transformer

In the ViT, the input image is initially fed into the em-
bedding layer to generate tokens. The image is divided into
patches of uniform size. Each patch is then projected into
a vector, and a token is created by incorporating positional
information. A set of tokens generated after embedding is as
follows:

Z0 = [z0,cls; z0,1; z0,2; ...; z0,N ] + Epos, (1)

where the first token (z0,cls) is a class token that is a learnable
value after initialization with random values. The generated set
of tokens Z0 serves as an input to the Transformer encoder
blocks. A Transformer encoder block is computed as follows:

Z ′
l = MSA(LN(Zl−1)) + Zl−1, (2)

Zl = FFN(LN(Z ′
l)) + Z ′

l . (3)

A Transformer encoder block consists of a multi-head self-
attention (MSA) layer and a feed-forward network (FFN).
LN represents a layer normalization, and l represents the
block number. To explain MSA, we introduce the attention
mechanism:

Attention(Q,K, V ) = A× V, (4)

A = softmax(
Q×KT

√
d

). (5)

Q, K, and V represent the query, key, and value matrices
constructed from the input tokens to facilitate attention calcu-
lation, respectively. A and d denote the attention matrix and the
scaling factor, respectively. The attention output is generated
by multiplying the attention matrix A with the value matrix V .
The attention matrix A is computed by multiplying the query
matrix with the transpose of the key matrix. The value will be
scaled by a scaling factor and a softmax operation will follow.
The scaled factor is derived by taking the square root of the
dimensions of the query and key matrices.

After tokens traverse a total of L Transformer encoder
blocks sequentially, the final classification result y is obtained
as follows:

y = LN(Z ′
L,cls) (6)



Once the final Transformer encoder block operation is
complete, only the class token among the output tokens is
passed as the input to the linear layer. Then the result y is
obtained using the output of the linear layer.

Algorithm 1 Bipartite Soft Matching algorithm
Input: Key tokens K, The number of reducing tokens r
Output: Indices of not matched tokens Tui, Indices of
matched tokens Tsi, Tdi

1: A← values at the even indices of K
2: B ← values at the odd indices of K
3: S ← A×BT

∥A∥×∥B∥ ▷ cosine similarity
4: Mv ← max(S, dim = 1)
5: Mi ← argmax(S, dim = 1)
6: Mvs ← argsort(Mv, order = descending)
7: Tsi ←Mvs[: r] ▷ top r
8: Tui ←Mvs[r :]
9: for i← 0 to N do

10: Tdi[i]←Mi[Tsi[i]]
11: end for

Algorithm 2 Merge algorithm
Input: Input tokens T , Indices of not matched tokens Tui,
Indices of matched tokens Tsi, Tdi

Output: Merged tokens Tm

1: Te ← tokens at the even indices of T
2: Td ← tokens at the odd indices of T
3: Nu ← number of index in Tui

4: Ns ← number of index in Tsi

5: for i← 0 to Nu do
6: Tu[i]← Te[Tui[i]]
7: end for
8: for i← 0 to Ns do
9: Ts[i]← Te[Tsi[i]]

10: end for
11: for i← 0 to Ns do
12: Td[Tdi[i]]← Td[Tdi[i]] + Ts[i]
13: end for
14: Tm ← concat(Td, Tu)

B. Bipartite Soft Matching

Bipartite soft matching is an algorithm proposed in ToMe
[10] for selecting and merging similar pairs of tokens. The
algorithm proceeds as follows:

1 The total set of the Key tokens is divided into two sets
of almost equal size, A and B.

2 For each token in set A, the most similar token from
set B is determined by calculating the cosine similarity
between their respective keys.

3 The token pairs are sorted based on similarity, and the r
most similar pairs are selected for merging. This step
may involve combining one token from set B with
multiple tokens from set A.

4 The tokens in a selected pair are merged to create a new
token. The new token will have values that correspond
to the weighted averages of the values of the merged
tokens, and the token size will be used as the weight.
The token size is the number of tokens merged in the
previous layers for each token.

The size of a token indicates how many tokens have been
cumulatively merged into the token. Prior to the merging
process, all tokens have never been merged with any other
token. So, all elements in the token size vector S are initialized
to 1. After each merging process is complete, the token size
vector S will be updated depending on the previous token size
vector and token matching information. In ToMe, the value
of the new token is computed by token size-based weighted
averaging, which means that tokens that have a bigger token
size have more influence on the final value. The detailed
process of the bipartite soft matching algorithm is described
in Algorithms 1, 2, and 3.

Algorithm 3 Merge with token size
Input: Input tokens T , Key tokens K, Token size S, The
number of reducing tokens r
Output: Merged tokens Tm

1: Tui, Tsi, Tdi ← BipartiteSoftMatching(K, r)
2: T ←Merge(T × S, Tui, Tsi, Tdi) ▷ Algorithm 2
3: S ←Merge(S, Tui, Tsi, Tdi) ▷ update token size
4: T ← T/S ▷ weighted average

C. CIS-based Merging

Fig. 2. Average cosine similarity with respect to the number of merged tokens
in one merge stage

ToMe conducts token merging using bipartite soft matching
and token size-based weighted averaging. However, using the
token size as the weight may underestimate the importance
of each token for classification during the merging process,
especially if you are merging a large number of tokens in a
single merging stage. By underestimation, we mean that when
important tokens are merged with less important tokens, the
important information needed for classification may be lost,
leading to a significant accuracy drop.

Fig. 2 shows the average cosine similarity of matched tokens
with respect to the number of tokens merged in a single merge



step. As depicted in the figure, there is a decrease in the
average similarity of matched tokens as the number of tokens
merged in one merge step increases. This observation hints
that merging a large number of tokens in one merge step
may result in merging dissimilar tokens where some distinctive
information in the merged tokens may be lost.

To alleviate this concern, we propose a novel method named
ToMeCIS. Our method computes values of the merged tokens
as the weighted average where class importance scores (CISs)
are used as weights. It is important that a score value should
represent each token’s importance, and we utilize the scoring
mechanism employed in token pruning domain [8]. We call
this class importance score (CIS) in the paper. CIS is denoted
as Scls and computed as follows:

Acls = softmax(
Qcls ×KT

√
d

), (7)

Scls = Acls ⊙ ∥V ∥2 , (8)

where Qcls is the first row of the query matrix Q. Since the
ViT relies solely on class tokens for classification, we use
Acls, the first row of the attention matrix, to assign CIS. The
attention layer generates an output by multiplying V with
the attention matrix. Note that Acls can be obtained without
computation because it was already calculated in (5). Then
we apply the l2-norm to transform matrix V and perform
element-wise multiplication with Acls to get CIS (Scls). By
incorporating information from both the attention matrix and
the V of each token, we can express the importance of each
token more accurately than the case where only the attention
matrix is used. If the self-attention process is multi-headed, the
CIS is computed by averaging Scls of all heads. The detailed
steps of the proposed CIS-based merging are described in
Algorithm 4.

Algorithm 4 Merge with class importance score
Input: Input tokens T , Key of input tokens K, Value of input
tokens V , Attention matrix A
Output: merged tokens Tm

1: Tui, Tsi, Tdi ← BipartiteSoftMatching(K, r)
2: Acls ← first row of A
3: Scls ← Acls ⊙ ∥V ∥2 ▷ class importance score
4: T ←Merge(T × Scls, Tui, Tsi, Tdi) ▷ Algorithm 2
5: T ← T/Scls ▷ weighted average

IV. EXPERIMENTS

A. Experimental settings

To evaluate the performance of the proposed method, we
conducted a classification task on the ImageNet-1k dataset
[11]. The ImageNet-1k dataset consists of 1 million training
samples and 50,000 validation samples of 1,000 classes. As
the base model, we used DeiT [13]. The ToMeCIS was
applied to the pretrained DeiT-Ti and DeiT-S by merging 13
tokens in each Transformer block. We conducted experiments
without fine-tuning the model after applying ToMeCIS to

the pretrained model. The evaluation was conducted with a
batch size of 128, using FP32 precision on a single GeForce
RTX 3090 GPU. Using the ImageNet-1k validation set, the
performance in terms of the accuracy and the throughput of
the models was evaluated.

B. Results

Table I presents the performance of ToMeCIS with DeiT
compared with other Vision Transformers (ViTs) in terms of
accuracy, GFLOPs, and throughput. In the case of DeiT-Ti,
ToMeCIS reduced GFLOPs by 46% and increased throughput
by 40% with a 1.6% accuracy loss compared to the base
model. In comparison to other ViTs with a similar number
of parameters, the accuracy change ranged from -1.1% to -
2.8% while achieving a GFLOPs decrease of 0% to 1.1%
and a throughput increase of 30% to 109%. In the case of
DeiT-S, ToMeCIS reduced GFLOPs by 41% and increased
throughput by 52% with a 0.9% accuracy loss compared to the
base model. Compared to other ViTs with a similar number
of parameters, the throughput was increased by 30% to 105%,
with an accuracy decrease of 2% to 4.4%.

TABLE I
PERFORMANCE COMPARISON OF VISION TRANSFORMERS

Model Params
(M)

Top1-Acc
(%) GFLOPs Throughput

(img/s)
DeiT-Ti [13] 5.7 72.2 1.3 3342.9
T2T-ViT-7 [14] 4.3 71.7 1.1 2498.4
PiT-Ti [15] 4.9 73.0 0.7 3594.9
CrossViT-Ti [16] 6.9 73.4 1.8 2235.1
DeiT-Ti-ToMeCIS 5.7 70.6 0.7 4672.4
DeiT-S [13] 22.1 79.8 4.6 1282.5
PiT-S [15] 23.5 80.9 2.9 1494.7
CrossViT-S [16] 26.7 81.0 5.6 905.1
Swin-T [17] 29.0 81.3 4.5 914.1
T2T-ViT-14 [14] 22.0 81.5 1.1 1017.8
LV-ViT-S [18] 26.2 83.3 6.6 951.2
DeiT-S-ToMeCIS 22.1 78.9 2.7 1949.6

TABLE II
PERFORMANCE COMPARISON OF TOKEN REDUCTION METHODS ON

DEIT-S

Methods Acc
(%) GFLOPs Throughput

(img/s)
Baseline [13] 79.82 4.6 1282.5
EViT [6] 78.52 (-1.30%) 3.0 (-35%) 1872.3 (+46%)
ToMe [10] 78.79 (-1.03%) 2.7 (-42%) 1956.1 (+53%)
ToMeCIS 78.90 (-0.92%) 2.7 (-42%) 1949.6 (+53%)

Table II presents the performance of ToMeCIS when com-
pared with other token reduction methods in terms of accu-
racy, GFLOPs, and throughput. All methods were applied to
the pretrained DeiT-S without additional training. Among all
the methods, ToMeCIS achieved the highest accuracy. Both
ToMeCIS and ToMe achieved the lowest GFLOPs while ToMe
achieved the highest throughput. However, the difference in
throughput between ToMeCIS and ToMe is negligible. In



conclusion, ToMeCIS achieves the highest performance in
terms of accuracy, GFLOPs, and throughput.

C. Ablation Study

Several scoring mechanisms have been proposed to accu-
rately estimate the importance of each token [6], [7], [8].
In this section, we evaluate the performance of ToMeCIS
using various scores while gradually increasing the number
of merged tokens for each layer. The scores we considered
include the token size, the class attention score (Acls), and
the class importance score (Scls). Additionally, a new scoring
method called attention mean score was evaluated as well.
The attention mean score represents the average influence of
a token on the other tokens. It was obtained by averaging
the attention matrix’s row corresponding to each token. We
applied ToMeCIS to DeiT-S for our experiments and merged
8 to 16 tokens for each layer. That is, the 8 to 16 most
similar token pairs were selected for merging in a bipartite
soft matching process. The range of the number of merged
tokens in one merge process was determined based on the
observation that merging more than 8 tokens at once led to
a significant throughput improvement of approximately 20%
or more, resulting in meaningful acceleration. If the number
of merged tokens was bigger than 16, it turned out that
an accuracy drop of more than 0.3% was observed with an
increment in the number of merged tokens by one. Considering
the trade-off between accuracy and increased throughput, this
accuracy drop was deemed significant.

Fig. 3. Accuracy versus the reduced number of tokens per layer with respect
to various score metrics

Fig. 3 represents the relationship between the accuracy and
the number of merged tokens per layer for each score. When
the number of tokens merged in one merge stage is less than
11, the accuracy differences do not show any particular trend.
On the other hand, the accuracy when using the token size
was similar to or less than the other scores when 11 or larger
tokens were merged. When 11 to 13 tokens were merged,
the class importance score achieved the highest accuracy. The
attention mean score achieved the highest accuracy when 14
and 15 tokens were merged. When 16 tokens were merged,

all methods showed a significant drop in accuracy, while the
class attention score achieved the highest accuracy.

Fig. 4. Accuracy versus throughput with respect to various score metrics

Fig. 5. Accuracy versus throughput with respect to token size and score
metrics

Fig. 4 shows the relationship between accuracy and through-
put with respect to various scoring metrics. The yellow line
in the graph denotes the baseline accuracy, while the red
line corresponds to the accuracy subtracted by 1% from
the baseline. Regions between the yellow line and the red
line indicate accuracy drops of less than 1% compared to
the baseline. As the accuracy approaches a maximum of
1% margin, the class importance score exhibits the highest
throughput, followed by the class attention score. On the other
hand, the token size consistently performs similarly or worse
than the other scores when the throughput is bigger than 1800
im/s. Therefore, the class importance score offers the highest
accuracy-to-throughput ratio when merging is performed with
a maximum accuracy margin of 1%.

We also made an attempt to use both token size and class
important score to compute the weighted averages even though
conceptually, there is little correlation between the token size
and the class importance score. To evaluate the performance
of this attempt, we make new scores obtained by multiplying



various scores with the size of each token. Fig. 5 represents
the relationship between accuracy and throughput when using
the token size and using the scores that consider both the token
size and the importance score. Similar to Fig. 4, the yellow and
the red lines represent the baseline accuracy and a maximum
margin of 1%, respectively. As shown in Fig. 5, the token size
achieves the best trade-off between throughput and accuracy.
These results indicate that incorporating both the token size
and the class importance score decreases throughput due to
increased computational costs during the merging process.
However, the accuracy drop is not significant compared to the
token size. Consequently, achieving a decent trade-off between
accuracy and throughput can be accomplished by utilizing
a weighted average with either the token size or the class
importance score alone.

V. CONCLUSION

In this paper, we proposed ToMeCIS, a new method for
merging tokens based on class importance scores. We evalu-
ated the proposed method on the DeiT models by comparing
other well-known Vision Transformers. As a result, ToMeCIS
achieved a 52% throughput increase with less than a 1%
accuracy drop compared to DeiT-S without any additional
training. Compared to the other token reduction methods,
ToMeCIS achieved the best trade-off between accuracy and
throughput. In addition, we verified that our scoring metric
to represent the class importance outperforms other scoring
metrics when they are utilized in token merging.

ACKNOWLEDGMENT

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No.2021-0-
00131, Development of Intelligent Edge Computing Semicon-
ductor For Lightweight Manufacturing Inspection Equipment)

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[3] Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynam-
icvit: Efficient vision transformers with dynamic token sparsification,”
Advances in neural information processing systems, vol. 34, pp. 13937–
13949, 2021.

[4] L. Meng, H. Li, B.-C. Chen, S. Lan, Z. Wu, Y.-G. Jiang, and S.-N. Lim,
“Adavit: Adaptive vision transformers for efficient image recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12309–12318, 2022.

[5] Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan,
B. Ren, H. Tang, et al., “Spvit: Enabling faster vision transformers via
latency-aware soft token pruning,” in Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XI, pp. 620–640, Springer, 2022.

[6] Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, and P. Xie, “Not all
patches are what you need: Expediting vision transformers via token
reorganizations,” arXiv preprint arXiv:2202.07800, 2022.

[7] Y. Xu, Z. Zhang, M. Zhang, K. Sheng, K. Li, W. Dong, L. Zhang,
C. Xu, and X. Sun, “Evo-vit: Slow-fast token evolution for dynamic
vision transformer,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 2964–2972, 2022.

[8] M. Fayyaz, S. A. Koohpayegani, F. R. Jafari, S. Sengupta, H. R. V.
Joze, E. Sommerlade, H. Pirsiavash, and J. Gall, “Adaptive token
sampling for efficient vision transformers,” in Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XI, pp. 396–414, Springer, 2022.

[9] M. Ryoo, A. Piergiovanni, A. Arnab, M. Dehghani, and A. Angelova,
“Tokenlearner: Adaptive space-time tokenization for videos,” Advances
in Neural Information Processing Systems, vol. 34, pp. 12786–12797,
2021.

[10] D. Bolya, C.-Y. Fu, X. Dai, P. Zhang, C. Feichtenhofer, and J. Hoffman,
“Token merging: Your vit but faster,” arXiv preprint arXiv:2210.09461,
2022.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

[12] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE
international conference on computer vision, pp. 843–852, 2017.

[13] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning,
pp. 10347–10357, PMLR, 2021.

[14] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng,
and S. Yan, “Tokens-to-token vit: Training vision transformers from
scratch on imagenet,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 558–567, 2021.

[15] B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, “Rethinking spa-
tial dimensions of vision transformers,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 11936–11945, 2021.

[16] C.-F. R. Chen, Q. Fan, and R. Panda, “Crossvit: Cross-attention multi-
scale vision transformer for image classification,” in Proceedings of the
IEEE/CVF international conference on computer vision, pp. 357–366,
2021.

[17] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 10012–10022, 2021.

[18] Z.-H. Jiang, Q. Hou, L. Yuan, D. Zhou, Y. Shi, X. Jin, A. Wang,
and J. Feng, “All tokens matter: Token labeling for training better vi-
sion transformers,” Advances in neural information processing systems,
vol. 34, pp. 18590–18602, 2021.


